- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
VanValkenburg, Ethan (2)
-
CaraDonna, Paul (1)
-
Chappell, Callie R. (1)
-
Dhami, Manpreet K. (1)
-
Fukami, Tadashi (1)
-
Goddard, Pagé C. (1)
-
Golden, Lexi‐Ann (1)
-
Gonçalves Souza, Thiago (1)
-
Hernandez, Jonathan (1)
-
Herrera Paredes, Sur (1)
-
Hossine, Marziiah (1)
-
Nell, Lucas A. (1)
-
Ortiz Chavez, Daniela (1)
-
Sanders, Nathan_J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Many plants have evolved nutrient rewards to attract pollinators to flowers, but most research has focused on the sugar content of floral nectar resources. Concentrations of sodium in floral nectar (a micronutrient in low concentrations in nectar) can vary substantially both among and within co‐occurring species. It is hypothesized that sodium concentrations in floral nectar might play an important and underappreciated role in plant–pollinator interactions, especially because many animals, including pollinators, are sodium limited in nature. Yet, the consequences of variation in sodium concentrations in floral nectar remain largely unexplored. Here, we investigate whether enriching floral nectar with sodium influences the composition, diversity, and frequency of plant–pollinator interactions. We experimentally enriched sodium concentrations in four plant species in a subalpine meadow in Colorado, USA. We found that flowers with sodium‐enriched nectar received more visits from a greater diversity of pollinators throughout the season. Different pollinator species foraged more frequently on flowers enriched with sodium and showed evidence of other changes to foraging behavior, including greater dietary evenness. These findings are consistent with the “salty nectar hypothesis,” providing evidence for the importance of sodium limitation in pollinators and suggesting that even small nectar constituents can shape plant–pollinator interactions.more » « less
-
Chappell, Callie R.; Goddard, Pagé C.; Golden, Lexi‐Ann; Hernandez, Jonathan; Ortiz Chavez, Daniela; Hossine, Marziiah; Herrera Paredes, Sur; VanValkenburg, Ethan; Nell, Lucas A.; Fukami, Tadashi; et al (, Molecular Ecology)ABSTRACT Priority effects, where the order and timing of species arrival influence the assembly of ecological communities, have been observed in a variety of taxa and habitats. However, the genetic and molecular basis of priority effects remains unclear, hindering a better understanding of when priority effects will be strong. We sought to gain such an understanding for the nectar yeastMetschnikowia reukaufiicommonly found in the nectar of our study plant, the hummingbird‐pollinatedDiplacus(Mimulus)aurantiacus. In this plant,M.reukaufiican experience strong priority effects when it reaches flowers after other nectar yeasts, such asM.rancensis. After inoculation into two contrasting types of synthetic nectar simulating early arrival ofM.rancensis, we conducted whole‐transcriptome sequencing of 108 strains ofM.reukaufii. We found that several genes were differentially expressed inM.reukaufiistrains when the nectar had been conditioned by growth ofM.rancensis. Many of these genes were associated with amino acid metabolism, suggesting thatM.reukaufiistrains responded molecularly to the reduction in amino acid availability caused byM.rancensis. Furthermore, investigation of expression quantitative trait loci (eQTLs) revealed that genes involved in amino acid transport and resistance to antifungal compounds were enriched in some genetic variants ofM.reukaufii. We also found that gene expression was associated with population growth rate, particularly when amino acids were limited. These results suggest that intraspecific genetic variation in the ability of nectar yeasts to respond to nutrient limitation and direct fungal competition underpins priority effects in this microbial system.more » « less
An official website of the United States government
